AAR 原則:
▌第一個 A 是 acquire(獲取):如何用最有效的方法獲取核心客戶。
▌第二個 A 是 activate(活躍):如何讓獲取的客戶快速成長,變得活躍、有黏性。
▌R 即 retention(保留):如何防範核心客戶流失。
數據可以貫徹這三個階段的始終,既可以幫你找出核心客戶,也可以告訴你什麼服務和價格能讓他們變成忠誠客戶,同時還可以用數據模型預測客戶未來的需求,甚至是他們離開的機率。
當企業充分掌握客戶當前狀態的數據之後,就可據此進行預測,發現問題馬上糾正,這就是懂得用數據的企業所做的事情。
例如,當你發放折價券時,是否想過,什麼時候應該讓客戶當次使用,什麼時候要留待下次使用?企業亂發折價券或經常打折,不但太博愛,還會讓客戶養成「無折不買」的習慣。
【方法 】行為數據比結果數據更有價值
企業一般關注的重點是交易數據,比如一天有多少客流量、多少交易額,卻忽略了這些交易背後的原因。
當把客戶的行為數據(交互行為)和交易數據相互關聯時,企業才會知道用什麼產品吸引什麼客戶最有效、什麼價格能讓這些客戶活躍起來、怎樣能讓他們對這個平台更感興趣,我們甚至可以預測到客戶流失的蛛絲馬跡。
客戶的行為數據不一定能產生交易,但可以讓我們更了解他,讓我們知道他為什麼會買,或者為什麼不會買。透過行為數據去發現客戶如何做決策,是個重要課題,即使是負面數據也可能有正面作用。
在互聯網世界,這些可以相互關聯的數據其實是唾手可得的。如果不知道哪些數據有價值,也不知道哪些數據可以交叉分析,產生價值,著實是一種浪費,相當於將魚翅當粉絲。
【方法 】從小處著手
假如中小企業希望充分使用數據,我的建議是,從結構化的、已有的數據開始,一步一步開展。中小企業要有清晰的具體目標 —— 希望數據幫自己做什麼、數據能解決什麼問題。
必須謹記,我們面對的是消費者,數據的收集、整合、決策、回饋,都必須從消費者出發,以人為中心,這樣才不至於太分散,盲目地「為了數據而數據」。
另外,企業不應把客戶看成一個整體,因為解決客戶的一般性需求,不等於了解客戶的特殊需求。在大數據的驅動下,批量生產的個性化或許並非遙不可及。
留言
張貼留言